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The Cauchy problem for a semilinear hyperbolic system of the type







∂tu(t,x) +

d∑

k=1

Ak(t,x)∂ku(t,x) = f(t,x, u(t,x))

u(0, ·) = v

is considered, with each matrix function Ak being diagonal, bounded and locally Lips-
chitz in x. Discrete models for the Boltzmann equation furnish examples of such systems.
For bounded initial data, and right hand side that is locally Lipschitz and locally bound-
ed in u, local existence and uniqueness results in L∞ are well known, together with some
estimates on weak solutions.

More precise estimates for weak solutions of the above Cauchy problem will be
given, supplemented by estimates on the maximal time of existence for the solution, as
well as the local existence and uniqueness in Lp setting (1 < p < ∞).
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Estimates on the weak solution of semilinear

1. Introduction

Let d and r be two positive integers, and Ω := 〈0, T 〉×Rd a strip in space-time. We consider
the Cauchy problem for a semilinear hyperbolic system of the type







∂tu(t,x) +
d∑

k=1

Ak(t,x)∂ku(t,x) = f(t,x, u(t,x))

u(0, ·) = v

.

Here, the vector function u = (u1, u2, · · · , ur) is unknown, while the matrix coefficients Ak,
k ∈ 1..d, the right-hand side f = (f1, f2, · · · , fr) and the initial condition v = (v1, v2, · · · , vr) are
known functions. We assume that each matrix function Ak is diagonal:

Ak = diag{ak
1, a

k
2, · · · , ak

r} .

This assumption gives the above system a decoupled form. Namely, if we define vector functions
ai (for i ∈ 1..r) by

ai := (a1
i , a

2
i , · · · , ad

i ) ,

the above Cauchy problem can be written as

(CP)

{
∂tui(t,x) + ai(t,x) · ∇ui(t,x) = fi(t,x, u(t,x))

ui(0, ·) = vi

, for i ∈ 1..r .

On the left-hand side of each equation in (CP) there is only one component of unknown vector
function u.

The motivation for studying such systems can be found in kinetic theory of gases: Carleman,
Broadwell and Maxwell systems (which are discrete models for the Boltzmann equation) are of
this type. Also, it can be easily verified that any strictly hyperbolic system in one space variable
can be reduced to a decoupled one (provided that coefficients are C1 smooth). Of course, a single
semilinear equation (case r = 1) is covered by (CP) as well.

We assume that each coefficient ai (for i ∈ 1..r) is

(A1)

• bounded: ai ∈ L∞(Ω;Rd) ;

• Lipschitz in x : (∃A > 0)(∀x,y ∈ Rd)

|ai(t,x) − ai(t,y)| ≤ A|x − y| (a.e. t ∈ 〈0, T 〉) .

Here and in the rest of this paper (in order to avoid writing some constants) by | · | we denote
the infinity vector norm (we use it also to denote the classical scalar norm), and by KRr [0, r1] we
denote the closed unit ball {z ∈ Rr : |z| ≤ r1} in Rr. For the initial condition and the right-hand
side we assume

(A2)

• v ∈ L∞(Rd;Rr) ;

• f : Ω̄ × Rr −→ Rr is measurable ;

• f is locally Lipschitz in u :

(∃Ψ ∈ L∞
loc(R))(∀ r1 > 0)(∀w, z ∈ KRr [0, r1])

|f(t,x,w) − f(t,x, z)| ≤ Ψ(r1)|w − z| (a.e. (t,x) ∈ Ω) ;

• f is locally bounded in u :

(∃Φ ∈ L∞
loc([0, T ] ×R))(∀ r1 > 0)(∀w ∈ KRr [0, r1])

|f(t,x,w)| ≤ Φ(t, r1) (a.e. (t,x) ∈ Ω) .

Under such rather weak hypothesis on the coefficients, the initial condition and the right-hand
side, one can only look for a weak solution.
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Definition. Function u ∈ L1
loc(Ω;Rr) is a weak solution of problem (CP) on Ω (under assump-

tions (A1) and (A2)) if for each i ∈ 1..r and for each ϕ ∈ C1
c([0, T 〉 ×Rd) it holds

−
∫ T

0

∫

Rd

ui[∂tϕ + div (ϕai)]dxdt =

∫ T

0

∫

Rd

fi(·, ·, u(·, ·))ϕdxdt +

∫

Rd

viϕ(0, ·)dx .

The space C1
c([0, T 〉 × Rd) consists of restrictions of functions from C1

c(〈−∞, T 〉 ×Rd) to
[0, T 〉 × Rd.

The paper is organised as follows: in the second section the local existence and uniqueness
result is proved. It is paired with an estimate on the solution of a certain type. This is a known
result (see [T1]), which is here proved under slightly generalised assumptions that do not change
the proof, but allow a more precise estimate on the solution. The estimates on the solution
and the time of its existence is the main topic of section three, which is the central part of this
paper. It is shown how to achieve the best possible estimate on the solution and its time of
existence (the best among all estimates of a certain type—the type provided by the existence and
uniqueness theorem). This section concludes with two examples. The first one compares the best
possible estimate on the solution achieved under old assumptions, with the new one (given by
generalised assumptions), showing that the new estimate is essentially better when the right-hand
side depends on the time variable. The second example shows that the estimate of the type we
are dealing with can be quite rough (for example, in some situations when the right-hand side
depends essentially on the space variable). In section four the Lp version (for p ∈ 〈1,∞〉) of the
existence and uniqueness theorem is briefly discussed. The paper concludes with an appendix
containing some results on ordinary differential equations that were used in previous sections (for
more information see [CL] and the references there), as well as the existence and uniqueness result
for the linear transport equation (which can be found in [T1]) used in Theorem 1.

2. Existence and uniqueness theorem

The existence and uniqueness result for (CP) can be found in unpublished lecture notes
by Luc Tartar [T1] (under assumption (A1) and slightly modified assumption (A2): function Φ
defining the local bound on f is not allowed to depend on the time variable). We shall state a more
precise version of the existence and uniqueness theorem together with its proof. The proof uses
existence and uniqueness result for the linear transport equation which is stated in the Appendix.

Theorem 1. Let assumptions (A1) and (A2) hold, and assume that u : [0, S〉 −→ R is an
absolutely continuous solution of

(ODE-t)

{

u′(t) = Φ(t, u(t))

u(0) = ‖v‖L∞(Rd)

,

for some S ∈ 〈0, T ]. Then there exists a unique function u ∈ L∞
loc([0, S〉; L∞(Rd;Rr)), which is a

weak solution of problem (CP) on 〈0, S〉 × Rd. Additionally, u satisfies the estimate

(E) ‖u(t, ·)‖L∞(Rd;Rr) ≤ u(t) (a.e. t ∈ 〈0, S〉) .

Dem. Let us prove the uniqueness first. Assume that u, v ∈ L∞
loc([0, S〉; L∞(Rd;Rr)) are two weak

solutions, and denote g(t) := ‖u(t, ·)− v(t, ·)‖L∞(Rd;Rr). Then (by locally Lipschitz property of f)

(∀ ε > 0)(∃Dε > 0)(∀ i ∈ 1..r)

‖fi(t, ·, u(t, ·))− fi(t, ·, v(t, ·))‖L∞(Rd) ≤ Dεg(t) (a.e. t ∈ 〈0, S − ε〉) .

If we subtract equations for u and v (better said, their weak formulations), and use the estimate
from Theorem 8, we get (for i ∈ 1..r and a.e. t ∈ 〈0, S − ε〉)

‖ui(t, ·) − vi(t, ·)‖ ≤
∫ t

0
‖fi(s, ·, u(s, ·)) − fi(s, ·, v(s, ·))‖L∞(Rd)ds .
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After taking maximum in i we have

g(t) ≤
∫ t

0
Dεg(s)ds , (a.e. t ∈ 〈0, S − ε〉) ,

and by Gronwall’s inequality it follows that g = 0 on 〈0, S−ε〉. Now the arbitrariness of ε implies
u = v almost everywhere on 〈0, S〉, and the uniqueness is proved.

To prove the existence we first inductively define un, n ∈ N, as the weak solution of a linear
problem {

∂tu
n
i (t,x) + ai(t,x) · ∇un

i (t,x) = fi(t,x, un−1(t,x))

un
i (0, ·) = vi

, for i ∈ 1..r ,

starting from a bounded function u0 on 〈0, S〉 ×Rd that satisfies

‖u0(t, ·)‖L∞(Rd;Rr) ≤ u(t) (a.e. t ∈ 〈0, S〉) .

By Theorem 8 each un is a well defined bounded function. Also, u1 satisfies the estimate

‖u1(t, ·)‖L∞(Rd;Rr) ≤ ‖v‖L∞(Rd) +

∫ t

0
‖f(s, ·, u0(s, ·))‖ds

≤ ‖v‖L∞(Rd) +

∫ t

0
Φ(s, u(s))ds = u(t) (a.e. t ∈ 〈0, S〉) .

Inductively, the same estimate can be proved for each un.
We now distingnish two cases. The first one is when u does not have a blow up in S (and

therefore is bounded). In this case, there exists a constant P such that |Ψ(u(·))| ≤ P . If we
subtract equations for un+1 and un, then use the estimate from Theorem 9 and locally Lipschitz
property of f, we get (for a.e. t ∈ 〈0, S − ε〉)

‖un+1(t, ·) − u
n(t, ·)‖L∞(Rd;Rr) ≤

∫ t

0
‖f(s, ·, un(s, ·)) − f(s, ·, un−1(s, ·))‖L∞(Rd;Rr)ds

≤ P

∫ t

0
‖un(s, ·) − u

n−1(s, ·)‖L∞(Rd;Rr)ds .

Now one can easily prove by induction that (for a.e. t ∈ 〈0, S − ε〉)

‖un+1(t, ·) − u
n(t, ·)‖L∞(Rd;Rr) ≤

RPntn

n!
≤ RPnSn

n!
,

where R := ‖u1 − u0‖L∞(〈0,S〉×Rd;Rr). As

n∑

j=0

‖uj+1 − u
j‖L∞(〈0,S〉×Rd;Rr) ≤

n∑

j=0

RP jSj

j!
≤ RePS ,

we conclude that series
∑n

j=0(u
j+1−uj) = un+1−u0 converges absolutely in L∞(〈0, S〉 × Rd;Rr),

which implies that un converges and we denote the limit of un by u. By locally Lipschitz property
of function f it follows

f(·, ·, un(·, ·)) −→ f(·, ·, u(·, ·)) in L∞(〈0, S〉 × Rd;Rr) .

After passing to the limit in weak formulation for each un one can easily verify that u satisfies
the weak formulation of (CP) and the estimate (E), which proves the existence in this case.

If u has blow up in S we repeat the argument of the previous case, thus getting a weak
solution uS1 on 〈0, S1〉 × Rd for each S1 ∈ 〈0, S〉. One can also easily check that uS1 = uS2 on
〈0, S1〉 × Rd, for 0 < S1 < S2 < S, which ensures the existence of a function u on 〈0, S〉 × Rd

with the property uS1 = u on 〈0, S1〉 × Rd, for each S1 < S. It is easy to see that u is a weak
solution of (CP) on 〈0, S〉 × Rd, and that estimate (E) holds.

Q.E.D.
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Remark. The only assumption on function Φ is that it belongs to L∞

loc([0, T ] × R), which is not enough
to guarantee the existence of solution for (ODE-t). However, if we take some function Φ1 that is larger
than Φ, then this function will also be a local bound for f. Therefore we can look for a solution of (ODE-t)
with Φ1 on the right-hand side instead of Φ. If we choose Φ1 as below (the one that does not depend on
time variable and it is continuous), this will ensure the existence of a C1 solution for (ODE-t).

If we denote

Cn := ‖Φ‖L∞([0,T ]×[0,n]) , n ∈ N ,

and define function Φ1 by

Φ1(u) := Cn+1 + (Cn+2 − Cn+1)(u − n) , u ∈ [n, n + 1] , n ∈ N0 ,

then the graph of Φ1 is given on the below figure.

u

Φ1

1 2 3 4

C1

C2

C3

C4

3. Estimates on solution

The bound on the solution u from Theorem 1 obviously depends on the solution u to (ODE-
t), and therefore on the choice of function Φ. From the proof of Theorem 1 it is clear that the
time of existence of solution u also depends on the time of existence of solution u to (ODE-t):
roughly speaking, if solution of (ODE-t) exists until some time S, then the solution of (CP) will
also exist at least until time S. As we have a large set to choose Φ from (as mentioned before, if
one function is a local bound for f, then any larger function is also a local bound for f), questions
that naturally arise are which Φ will give the best estimate on solution of (CP) and which Φ
will give the largest time of existence for solution to (CP). The next theorem partially gives the
answer to the first question.

Theorem 2. Assume that Φ1,Φ2 : [0, T ] × R −→ R are two measurable functions such that
Φ1 ≤ Φ2 (a.e.) and Φ1 is locally Lipschitz in second variable:

(∃Ψ ∈ L∞
loc(R))(∀u, v ∈ R)

|u| ≥ |v| =⇒ |Φ1(t, u) − Φ1(t, v)| ≤ Ψ(|u|)|u − v| (a.e. t ∈ 〈0, T 〉) .

Furthermore, let (for i = 1, 2 and Ti ≤ T ) ui : [0, Ti〉 −→ R, be a solution of

{
u′

i(t) = Φi(t, ui(t)) (a.e. t)

ui(0) = u0
,

and u1 ∈ W1,∞
loc ([0, T1〉), u2 ∈ W1,1

loc([0, T2〉). Then u1 ≤ u2 on the intersection of their intervals of
existence.
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Dem. Suppose that there is c > 0 such that u1(c) > u2(c). As u1 and u2 are continuous, inequality
u1 > u2 holds on some open interval that contains c. Let 〈a, b〉 be the union of all such intervals.
Obviously u1(a) = u2(a) =: ua, and for t ∈ 〈a, b〉 the formulae

ui(t) = ua +

∫ t

a

Φi(s, ui(s))ds , i = 1, 2

hold. For ε > 0 small let K := Ψ
(

‖u1‖L∞([a,b−ε])

)

; then for t ∈ [a, b − ε] we have

|u1(t) − u2(t)| = u1(t) − u2(t) =

∫ t

a

Φ1(s, u1(s))

≤0
︷ ︸︸ ︷

−Φ2(s, u2(s)) + Φ1(s, u2(s))−Φ1(s, u2(s))ds

≤
∫ t

a

Φ1(s, u1(s)) − Φ1(s, u2(s))ds

≤
∫ t

a

|Φ1(s, u1(s)) − Φ1(s, u2(s))|ds ≤
∫ t

a

K|u1(s) − u2(s)|ds .

Finally, Gronwall’s inequality implies u1 = u2 on [a, b − ε], which contradicts u1 > u2 on 〈a, b〉.
Q.E.D.

The above theorem suggests that the best possible estimate of type (E) will be given by the
smallest possible function Φ. Let us investigate the properties of such Φ.

Theorem 3. The function

h(t, u) := max
|u|≤u

vrai sup
x∈Rd

|f(t, x, u)| , t ∈ [0, T ] , u ∈ R+
0 ,

which is the smallest local bound for f has the following properties:

• h ∈ L∞
loc([0, T ] × R+

0 );

• h ≥ 0 and h(t, ·) is nondecresing, t ∈ [0, T ];

• h is locally Lipschitz in u (with the same Ψ as in (A2)) :

(∀u, v ∈ R+
0 ) u ≥ v =⇒ |h(t, u) − h(t, v)| ≤ Ψ(u)|u − v| (a.e. t ∈ [0, T ]).

Dem. The first two properties are obvious, and it only remains to show the last one. In order to
do that let us first show that function g : [0, T ] ×Rr −→ R defined by

g(t, u) := vrai sup
x∈Rd

|f(t, x, u)|

is locally Lipschitz in u:

(1) (∀ r1 > 0)(∀w, z ∈ KRr [0, r1]) |g(t,w) − g(t, z)| ≤ Ψ(r1)|w − z| (a.e. t ∈ [0, t]) .

Indeed, if (for r1 > 0) w and z from KRr [0, r1] are fixed, then the locally Lipschitz property of
function f (from (A2)) implies

(2) |f(t,x,w)| ≤ |f(t,x, z)|+ Ψ(r1)|w − z| (a.e. (t,x) ∈ Ω) .

By definition of essential supremum for each t ∈ [0, t] and for each ε > 0 there exists a set of
positive measure Et,w

ε ⊆ Rd, such that

(∀x ∈ Et,w
ε ) g(t,w) ≤ ε + |f(t,x,w)| .

Krešimir Burazin 5



Estimates on the weak solution of semilinear

Combining this with (2) we get

g(t,w) ≤ ε + |f(t,x, z)|+ Ψ(r1)|w − z| (a.e. t ∈ [0, T ] , x ∈ Et,w
ε ) ,

and then easily
g(t,w) ≤ ε + g(t, z) + Ψ(r1)|w − z| (a.e. t ∈ [0, T ]) .

By arbitrariness of ε > 0 we derive

g(t,w) − g(t, z) ≤ Ψ(r1)|w − z| (a.e. t ∈ [0, T ]) .

In a similar way one can prove

g(t, z) − g(t,w) ≤ Ψ(r1)|w − z| (a.e. t ∈ [0, T ]) ,

which completes the proof of statement (1).
In order to prove that h is locally Lipschitz in the last variable, choose u ≥ v ≥ 0, and for

t ∈ [0, T ] denote by wt some point from KRr [0, u], such that h(t, u) = g(t,wt). If wt ∈ KRr [0, v],
then h(t, u) = h(t, v), and the inequality in locally Lipschitz condition for h is trivially satisfied.
If wt /∈ KRr [0, v], then by zt denote the intersection of KRr [0, v] with segment line connecting w

and 0 in Rr. It holds

g(t,wt) − g(t, zt) ≤ Ψ(u)|wt − zt| ≤ Ψ(u)|u − v| (a.e. t ∈ [0, T ]) ,

and therefore

h(t, u) ≤ g(t, zt) + Ψ(u)|u − v| ≤ h(t, v) + Ψ(u)|u − v| (a.e. t ∈ [0, T ]) .

This implies

|h(t, u) − h(t, v)| = h(t, u) − h(t, v) ≤ Ψ(u)|u − v| (a.e. t ∈ [0, T ]) ,

as claimed.
Q.E.D.

Remark. If we extend h to [−T, T ] × R by

h(−t, u) := h(t, u) , (t, u) ∈ [0, T ] × R+
0 ;

h(t,−u) := h(t, u) , (t, u) ∈ [−T, T ] × R+
0 ;

it will still be a locally bounded function (now from L∞

loc([−T, T ] × R)) and locally Lipschitz in the second
variable (with the same Ψ as before).

Corollary 1. Let h be as in previous theorem, u0 ≥ 0, and let uh ∈ W1,∞
loc (〈α, β〉) be the

maximal solution of {
u′

h(t) = h(t, uh(t)) (a.e. t)

u(0) = u0

(such uh exists by Theorem 6 from the Appendix). Assume that v ∈ W1,1
loc([0, T ′〉) is a solution of

{
v′(t) = Φ(t, v(t)) (a.e. t ∈ 〈0, T ′〉)
v(0) = u0

,

for some measurable function Φ ≥ h. Then it is necessary that T ′ ≤ β ≤ T and u ≤ v on [0, T ′〉.
Therefore, uh is the best estimate on the solution u to (CP) of type (E), and u exists at least

until time β (which is the greatest time of existence that Theorem 1 can ensure).

Dem. By Theorem 7 from Appendix u has blow up in β, and we already know by Theorem 2
that u ≤ v. Therefore T ′ ≤ β.

Q.E.D.
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Let us now look at two (academic) examples. The first one shows that, in order to get the
best possible estimate, it is crucial to allow Φ (local bound for f) to depend on time variable (of
course, this is the case when the right-hand side actually depends on t).

Example. Consider the Cauchy problem for a single equation in one space dimension







∂tU(t, x) + ∂xU(t, x) = f(t, x, U) := tU2 in 〈0, T 〉 × R

U(0, ·) =
1

γ

,

where γ > 0 is a constant. The unique solution of this problem is given by

U(t, x) =
1

γ − t2/2
,

and it exists until time tc = min{T,
√

2γ}. If we do not allow the local bound for f to depend on time
variable, the best one (the smallest one) we get is Φ(u) = Tu2, and the solution of corresponding (ODE-t)

problem u1(t) =
1

γ − Tt
exists until time t1 = min{T,

γ

T
}. However, if we allow the local bound for f to

depend on time variable, we get h(t, u) = tu2. Then the solution of (ODE-h) problem u2(t) =
1

γ − t2/2
=

U(t, x) exists until time t2 = tc = min{T,
√

2γ}. It is clear that u1(t) > u2(t) = ‖U(t, ·)‖L∞(R) and
t1 ≤ t2 = tc as it is illustrated on picture below (if we were solving the above Cauchy problem on the
whole half-space, we would get t1 =

√
γ <

√
2γ = t2 = tc).

t

γ

√
γ

√
2γ

u1 u2

The second example illustrates that an estimate of type (E) is not the best possible.

Example. Let

g(x) =

{

e−x , x ≥ 0

ex , x ≤ 0
.

One can easily check that the unique solution of problem







∂tU + ∂xU = U2(g + tg′) a.e. in 〈0,∞〉× R

U(0, ·) =
1

γ
> 0

exists until time tc = γ, as it is given by

U(t, x) =
1

γ − tg(x)
.
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Here the best (the smallest) local bound for above right-hand side that does not depend on t is Φ(u) =
(1 + T )u2 (on strip 〈0, T 〉 ×R), while h(t, u) = (1 + t)u2. The solution u1 of (ODE-t) and the solution u2

of (ODE-h) satisfy (for t > 0)

‖U(t, ·)‖L∞(R) =
1

γ − t
< u2(t) =

1

γ − t − 1
2 t2

< u1(t) =
1

γ − (1 + T )t
,

and for the (best possible) corresponding times of existence we have

T = t1 =
−1 +

√
1 + 4γ

2
< t2 = −1 +

√

1 + 2γ < tc = γ .

This is represented in the figures below.

γ

t1

t2

tc

t

1

γ

γt2t1

‖U(t, ·)‖∞u2u1

4. L
p case

Let p ∈ 〈1,+∞〉, and suppose that the initial condition and the right-hand side satisfy the
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following assumptions:

(A3)

• v ∈ Lp(Rd;Rr) ;

• f : Ω × Rr −→ Rr is mesurable ;

• (∃Ψ ∈ L∞
loc(R))(∀ r1 > 0)(∀w, z ∈ KLp(Rd;Rr)[0, r1])

‖f(t, ·,w(·))− f(t, ·, z(·))‖Lp ≤ Ψ(r1)‖w − z‖Lp (a.e. t ∈ [0, T ]) ;

• (∃Φ ∈ L∞
loc([0, T ] × R))(∀ r1 > 0)(∀w ∈ KLp(Rd;Rr)[0, r1])

‖f(t, ·,w(·))‖Lp ≤ Φ(t, r1) (a.e. t ∈ [0, T ]) .

Theorem 4. Let assumptions (A1) and (A3) hold, and let Cp be the constant from Theorem 8.
Assume that u : [0, S〉 −→ R is an absolutely continuous solution of

{

u′(t) = CpΦ(t, u(t))

u(0) = Cp‖v‖L∞(Rd)

,

for some S ∈ 〈0, T ]. Then there exists a unique function u ∈ L∞
loc([0, S〉; Lp(Rd;Rr)), which is

a weak solution of problem (CP) on 〈0, S〉 × Rd (note that the definition of weak solution is
meaningful under assumptions (A1) and (A3)). Additionally, u satisfies the estimate

‖u(t, ·)‖Lp(Rd;Rr) ≤ u(t) (a.e. t ∈ 〈0, S〉) .

We do not present the proof of this theorem, as it is analogous to the proof of Theorem 1.

Remark. Assumptions (A3), when compared to assumptions (A2), are more difficult to verify. They
also appear to be relatively restrictive on function f, as they impose a sublinear growth in variable w of
function f, which is well known from the theory of Nemitski operators.

Appendix

Let h : [−T, T ]×R −→ R be a function from L∞
loc([−T, T ] × R), which is also locally Lispchitz

in the second variable:

(∃Ψ ∈ L∞
loc(R))(∀u, v ∈ R) |u| ≥ |v| =⇒ |h(t, u) − h(t, v)| ≤ Ψ(|u|)|u − v| (a.e. t ∈ [−T, T ]).

We are interested in finding a solution u of the Cauchy problem

(ODE-h)

{
u′(t) = h(t, u(t)) (a.e. t)

u(0) = u0
,

for some u0 ∈ R. Using classical Picard’s iterative process one can construct a sequence that
converges to a solution of (ODE-h) (in an appropriate class), thus proving the following theorem
(uniqueness can be proved by Gronwal’s lemma).

Theorem 5. Under the above assumption on h, there is S > 0 and unique function u from
W1,∞

loc (〈−S, S〉) that is s solution of (ODE-h) on 〈−S, S〉.
In the same fashion as in the classical (smooth) case one can prove the existence of maximal

solution.

Theorem 6. There is a maximal (open) interval I 3 0 and unique maximal solution u ∈ W1,∞
loc (I)

of problem (ODE-h). More precisely, if J ⊆ 〈−T, T 〉 is an open interval, and v ∈ W1,∞
loc (J) some

solution of (ODE-h), then we have J ⊆ I and v = u|J .
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Lemma 1. If u ∈ W1,∞
loc (〈S1, S2〉) is some solution of (ODE-h), and

lim
t→S−

2

u(t) ∈ R ,

then u ∈ W1,∞
loc (〈S1, S2]).

Dem. It is obvious that u ∈ L∞
loc(〈S1, S2]). Therefore, for each ε > 0 we have u ∈ L∞([S1 + ε, S2])

and, as h is locally bounded, for s, t ∈ [S1 + ε, S2] it holds

|u(t) − u(s)| =
∣
∣
∣

∫ t

s

h(σ, u(σ))dσ
∣
∣
∣ ≤

∫ t

s

|h(σ, u(σ))|dσ ≤ Cε|t − s| ,

for some constant Cε > 0. It follows that u is a Lipschitz function on [S1 + ε, S2], for each ε > 0,

which implies u ∈ W1,∞
loc (〈S1, S2]).

Q.E.D.

Theorem 7. Additionally suppose that h ≥ 0 and u0 ≥ 0. If u ∈ W1,∞
loc (〈α, β〉) is the maximal

solution of (ODE-h), and β < T , then

lim
t→β−

u(t) = +∞ .

Dem. First note that h ≥ 0 and u0 ≥ 0 implies u ≥ 0. Now suppose that limt→β− u(t) =
uβ ∈ R (this limit always exists as u is continuous). By Theorem 5 there exists ε > 0 and

ũ ∈ W1,∞
loc (〈β − ε, β + ε〉) that locally solves

{
ũ′(t) = h(t, ũ(t)) (a.e. t)

ũ(β) = uβ

.

Let v : 〈α, β + ε〉 −→ R be the function defined by

v(t) :=

{
u(t) , t ∈ 〈α, β]

ũ(t) , t ∈ [β, β + ε〉 .

By the preceding lemma u ∈ W1,∞
loc (〈α, β]), which together with ũ ∈ W1,∞

loc (〈β − ε, β + ε〉) implies

that v ∈ W1,∞
loc (〈α, β + ε〉). As v is clearly a solution of (ODE-h) this contradicts the fact that u

is the maximal solution of (ODE-h).
Q.E.D.

Remark. The above theorem states that if the maximal solution stops before time T , it is due to the
blowup.

Theorem 8. Let p ∈ 〈1,∞], and a ∈ L∞(Ω;Rd) be a function that satisfies

(∃A > 0)(∀x,y ∈ Rd) |a(t,x) − a(t,y)| ≤ A|x − y| (a.e. t ∈ 〈0, T 〉) .

Furthermore, let v ∈ Lp(Rd) and f ∈ L1([0, T ]; Lp(Rd)). Then the Cauchy problem
{

∂tU(t,x) + a(t,x) · ∇U(t,x) = f(t,x) in Ω

U(0, ·) = v

has unique weak solution U in class L∞([0, T ]; Lp(Rd)), in the sense

(∀ϕ ∈ C1
c([0, T 〉 × Rd)) −

∫ T

0

∫

Rd

U [∂tϕ + div (ϕa)]dxdt =

∫ T

0

∫

Rd

fϕdxdt +

∫

Rd

vϕ(0, ·)dx .

Additionally, there is a constant Cp depending on p, T and a, such that the estimate

‖U(t, ·)‖Lp(Rd) ≤ Cp

(

‖v‖Lp(Rd) +

∫ t

0
‖f(s, ·)‖Lp(Rd)ds

)

, (a.e. t ∈ [0, T ])

holds. In particular C∞ = 1.
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